Evolution of the statistical distribution in a topological defect network
نویسندگان
چکیده
The complex networks of numerous topological defects in hexagonal manganites are highly relevant to vastly different phenomena from the birth of our cosmos to superfluidity transition. The topological defects in hexagonal manganites form two types of domain networks: type-I without and type-II with electric self-poling. A combined phase-field simulations and experimental study shows that the frequencies of domains with N-sides, i.e. of N-gons, in a type-I network are fitted by a lognormal distribution, whereas those in type-II display a scale-free power-law distribution with exponent ∼2. A preferential attachment process that N-gons with a larger N have higher probability of coalescence is responsible for the emergence of the scale-free networks. Since the domain networks can be observed, analyzed, and manipulated at room temperature, hexagonal manganites provide a unique opportunity to explore how the statistical distribution of a topological defect network evolves with an external electric field.
منابع مشابه
Study of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model
In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملOPTIMAL DESIGN OF WATER DISTRIBUTION SYSTEM USING CENTRAL FORCE OPTIMIZATION AND DIFFERENTIAL EVOLUTION
For any agency dealing with the design of the water distribution network, an economic design will be an objective. In this research, Central Force Optimization (CFO) and Differential Evolution (DE) algorithm were used to optimize Ismail Abad water Distribution network. Optimization of the network has been evaluated by developing an optimization model based on CFO and DE algorithm in MATLAB and ...
متن کاملSampling from social networks’s graph based on topological properties and bee colony algorithm
In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as de...
متن کاملVULNERABILITY ASSESSMENT OF WATER DISTRIBUTION NETWORKS: GRAPH THEORY METHOD
The main functional purpose of a water distribution network is to transport water from a source to several domestic and industrial units while at the same time satisfying various requirements on hydraulic response. All the water distribution networks perform two basic operations: firstly the water network needs to deliver adequate amounts of water to meet specific requirements, and secondly the...
متن کامل